

TT.MM.YYYY

Mastereingangstest

Masterstudiengang Biomedizintechnik

Name:	

Fachbereich	Ergebnis	Bemerkung
Mathematik		
Technische Mechanik		
Elektrotechnik		
Konstruktionstechnik		
Werkstoffkunde		
Thermodynamik		
Mess- und Regelungstechnik		
Medizintechnische Grundlagen		
Summe		

Bearbeitungsdauer: 90 Minuten

Erlaubte Hilfsmittel: Nichtprogrammierbarer Taschenrechner, Wörterbuch

Note: English annotations are given for comprehension reasons only!

Please state all your answers in German!

Mastereingangstest Mathematik

Mathematik

Aufgabe 1 (2 Punkte)

Gegeben seien die Vektoren

$$\vec{x} = \begin{pmatrix} -3 \\ 11 \end{pmatrix} \quad \text{und} \quad \vec{y} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}.$$

Berechnen Sie die orthogonale Projektion $\vec{x}_{\vec{y}}$ von \vec{x} in Richtung von \vec{y} und den zu \vec{y} orthogonalen Bestandteil $\vec{x}_{\vec{y}}^{\perp}$.

Name: Seite 3 von 37

Mastereingangstest Mathematik

Aufgabe 2 (3 Punkte)

Bestimmen Sie mithilfe einer Partialbruchzerlegung die Stammfunktionen von

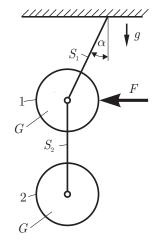
$$f(x) = \frac{1}{(x-6)(x-5)}.$$

Hinweis: Geben Sie die Stammfunktion in allgemeingültiger Form an.

Name: Seite 4 von 37

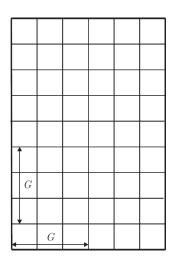
Mastereingangstest Mathematik

Platzhalter für Berechnungen


Name: Seite 5 von 37

Technische Mechanik

Aufgabe 1 (2 Punkte)

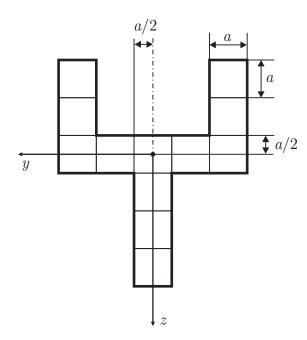

Die homogene Walze 1 (Gewicht G) ist über das masselose Seil S_1 an einer Decke befestigt. Die homogene Walze 2 (Gewicht G) ist mittels masselosem Seil S_2 mit Walze 1 verbunden. Auf die Walze 1 wirkt die horizontale Kraft F.

Gegeben (given): G, F = G.

Aufgabe 1a (1 Punkt)

Zeichnen Sie den Kräfteplan für die Walze 1!

Aufgabe 1b (1 Punkt)

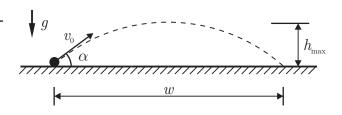

Ermitteln Sie die Seilkraft S_1 und den Winkel α im Gleichgewicht!

Name: Seite 6 von 37

Aufgabe 2 (2 Punkte)

Berechnen Sie die Flächenträgheitsmomente des skizzierten Profils um die y- und um die z-Achse!

Gegeben (given): a.


Name: Seite 7 von 37

Platz für Berechnungen:

Name: Seite 8 von 37

Aufgabe 3 (3 Punkte)

Eine Kugel wird auf einer horizontalen Ebene unter dem Winkel α mit der Austrittsgeschwindigkeit v_0 abgeschossen. Reibung zwischen Kugel und Umgebung kann vernachlässigt werden.

Gegeben (given): α , w, g.

Aufgabe 3a (1 Punkt)

Wie groß muss die Austrittsgeschwindigkeit v_0 sein, damit die Kugel bei der Weite w auftrifft?

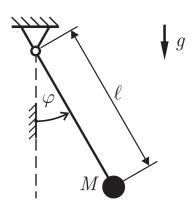
Aufgabe 3b (1 Punkt)

Nach welcher Zeit $t(h_{\max})$ erreicht die Kugel ihre maximale Höhe h_{\max} ?

Aufgabe 3c (1 Punkt)

Unter welchem Winkel β gegenüber der Horizontalen trifft die Kugel wieder auf die Ebene?

Name: Seite 9 von 37


Platz für Berechnungen:

Name: Seite 10 von 37

Aufgabe 4 (3 Punkte)

Eine Punktmasse M hängt an einem masselosen Faden der Länge $\ell.$

Gegeben (given): $g \approx 3\pi \,\mathrm{m/s^2}$, ℓ , $T^* = 2 \,\mathrm{s}$.

Aufgabe 4a (1 Punkt)

Geben Sie die Bewegungsgleichung für kleine Auslenkungen φ an!

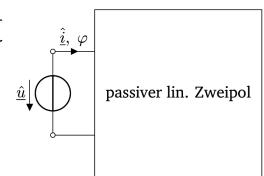
Aufgabe 4b (1 Punkt)

Bestimmen Sie die Eigenkreisfrequenz $\omega_0!$

Aufgabe 4c (1 Punkt)

Für welche Pendellänge $\ell=\ell^*$ wird die Schwingungsdauer $T^*=2\,\mathrm{s}$ lang?

Name: Seite 11 von 37


Platz für Berechnungen:

Name: Seite 12 von 37

Elektrotechnik

Aufgabe 1 (2 Punkte)

An einen passiven, linearen Zweipol wird eine Spannungsquelle mit der Spitzenwertspannung \hat{u} und der Frequenz f angeschlossen. Gemessen wird der Spitzenwertstrom \hat{i} und die Phase zwischen Strom und Spannung φ .

Gegebene Größen (given):

$$\hat{i} = 70 \text{ mA}$$

$$\hat{u} = 20 \text{ V}$$

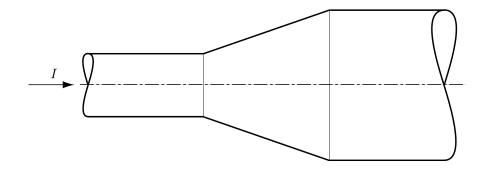
$$\varphi = +38^{\circ}$$

$$f = 2 \text{ kHz}$$

Aufgabe 1a (1 Punkt)

Berechnen Sie die Kreisfrequenz ω .

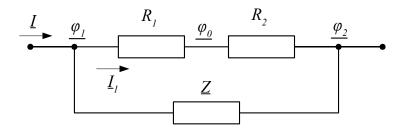
Aufgabe 1b (1 Punkt)


Berechnen Sie die Impedanz des unbekannten Zweipols.

Name: Seite 13 von 37

Aufgabe 2 (1 Punkt)

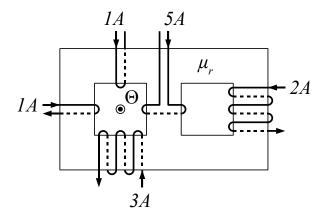
In einem Leiter mit zwei zylindrischen Abschnitten (sections) und einem konischen Übergangsstück (conical transition piece - see sketch/siehe Bild) fließt der Strom (current) I. Der Leiter besteht aus Metall mit konstantem spezifischen Widerstand (resistance). Skizzieren Sie die Äquipotenzialflächen des Strömungsfelds (equipotential regions of the electric flow field) in mindestens fünf Stufen pro Abschnitt.


Bitte tragen Sie die Lösung im Bild ein.

Name: Seite 14 von 37

Aufgabe 3 (3 Punkte)

Berechnen Sie für das gezeigte Schaltbild die komplexwertigen Potentiale (complex potentials) $\underline{\varphi_1}$ und $\underline{\varphi_2}$. Geben Sie die Werte in kartesischer Form (Real- und Imaginärteile) mit Vorzeichen und Einheiten an. Welches Schaltelement beschreibt \underline{Z} ? (Give the values in cartesian form (real and imaginary part) with signs and units. Which circuit element does \underline{Z} represent?)

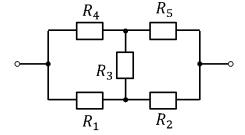


Gegeben (given): $\underline{I}=1$ A, $\varphi_0=0$ V, $R_1=1$ Ω , $R_2=2$ Ω , $\underline{Z}=j\cdot 2$ Ω

Name: Seite 15 von 37

Aufgabe 4 (1 Punkt)

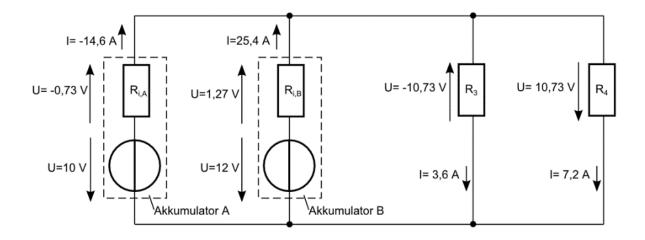
Bestimmen Sie für den gezeigten Magnetkreis (magnetic circuit) mit fünf Wicklungen (windings) die elektrische Durchflutung (current linkage) Θ des linken Fensters. Beachten Sie die vorgegebene Bezugsrichtung (given current direction).



Gegeben (given): $\mu_r = 1000$

Name: Seite 16 von 37

Aufgabe 5 (2 Punkte)


Gegeben ist der folgende Zweipol mit den Widerständen $R_1=R_2=R_3=R_4=R_5=R$. Bestimmen Sie den zusammengefassten Widerstand zwischen den beiden Klemmen.

Name: Seite 17 von 37

Aufgabe 6 (1 Punkt)

Gegeben ist folgendes Ersatzschaltbild:

Dabei repräsentieren die beiden linken Zweige jeweils ein einfaches Ersatzschaltbild eines Akkumulators und die beiden rechten Zweige jeweils ein einfaches Ersatzschaltbild eines Verbrauchers. Die angegebenen Ströme und Spannungen wurden ermittelt.

Wird der Akkumulator A geladen oder entladen?

- geladen
- entladen

Wird der Akkumulator B geladen oder entladen?

- geladen
- entladen

Wird am Widerstand R_3 elektrische Leistung aufgenommen oder abgegeben?

- R₃ nimmt elektrische Leistung auf
- \bigcirc R_3 gibt elektrische Leistung ab

Wird am Widerstand R_4 elektrische Leistung aufgenommen oder abgegeben?

- \bigcirc R_4 nimmt elektrische Leistung auf
- \bigcirc R_4 gibt elektrische Leistung ab

Name: Seite 18 von 37

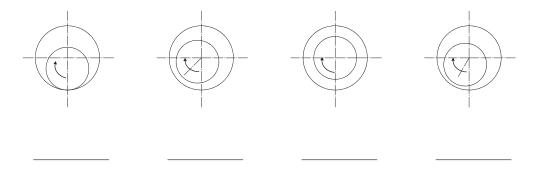
Platz für Berechnungen:

Name: Seite 19 von 37


Konstruktionstechnik

Aufgabe 1 (3 Punkte)

Die Welle eines Abluftgebläses (exhaust fan) ist in hydrodynamischen Radialgleitlagern (fluid bearing) gelagert.


Aufgabe 1a (2 Punkte)

Zeichnen Sie qualitativ den Reibwertverlauf (graph of the friction coefficient as a function of rotational speed) beim Hochlauf (start-up) des Gebläses in das untenstehende Diagramm ein. Kennzeichnen Sie die Bereiche (domains) für hydrodynamische Reibung (full film hydrodynamic lubrication), Mischreibung (mixed lubrication) und Grenz- bzw. Fest-körperreibung (boundary lubrication).

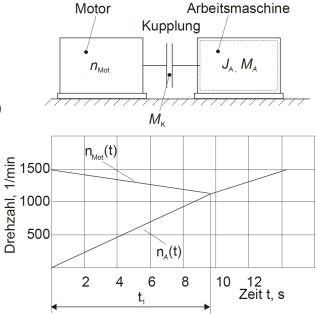
Aufgabe 1b (1 Punkt)

Die folgenden Skizzen zeigen verschiedene Lagen (positions) der Welle (shaft) bei unterschiedlichen Drehzahlen (speeds). Ordnen Sie die Skizzen nach steigender Drehzahl (kleinste Drehzahl: Nummer 1 usw.). (Number the drawings according to increasing shaft speed; lowest speed: no. 1 etc.)

Name: Seite 20 von 37

Aufgabe 2 (3 Punkte)

Eine Arbeitsmaschine (driven machine) wird über eine Reibungsschaltkupplung (friction clutch) wie in der Skizze dargestellt von einem Motor angetrieben. Im Diagramm sind vereinfacht die Drehzahlverläufe $n_{Mot}(t)$ des Motors und $n_A(t)$ der Arbeitsmaschine dargestellt.


Gegeben sind folgende Daten (given):

$$J_A=2{,}25~\rm kgm^2$$

$$M_A = 54 \text{ Nm}$$

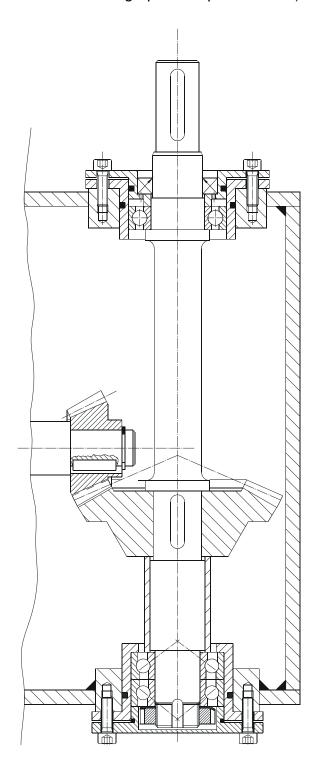
$$n_{Mot}(t=0) = 1500 \text{ min}^{-1}$$

$$n_S = 1090 \text{ min}^{-1}$$

Aufgabe 2a (2 Punkte)

Die stillstehende (stationary) Arbeitsmaschine wird unter Last (under load) an den im Leerlauf (idling speed) drehenden Motor angekuppelt. Nach der Zeit $t_1=9,85~\mathrm{s}$ erreichen Motor und Arbeitsmaschine die Synchrondrehzahl n_S . Berechnen Sie das Kupplungsmoment (clutch torque) M_K .

Name: Seite 21 von 37


Aufgabe 2b (1 Punkt)

Berechnen Sie die Reibarbeit (frictional work) W_R , die bis zum Erreichen der Synchrondrehzahl in Wärme umgesetzt wird (converted into heat). Falls Sie den vorherigen Aufgabenteil nicht gelöst haben, rechnen Sie bitte mit $M_K=70~\mathrm{Nm}$ weiter (If you were not able to solve the former task, please use $M_K=70~\mathrm{Nm}$ for further calculation).

Name: Seite 22 von 37

Aufgabe 3 (3 Punkte)

Die Zeichnung zeigt einen Ausschnitt eines ölgeschmierten Getriebes. Es liegen mehrere konstruktive Fehler (design errors) in dem Getriebe vor. Markieren Sie 6 der Fehler mit Linien und benennen Sie sie kurz (nur konstruktive, keine zeichnerischen Fehler berücksichtigen – Please mark violations of design principles only, do not mark potential mistakes in the graphical representation).

Name: Seite 23 von 37

Aufgabe 4 (1 Punkt)

Geben Sie Zugfestigkeit (tensile strength) R_m und die Streckgrenze (yield stress) $R_{p0,2}$ einer Schraube (screw) M16 mit der Festigkeitsklasse (property class) 12.9 an.

Name: Seite 24 von 37

Mastereingangstest Werkstoffkunde

Werkstoffkunde

Aufgabe 1 (10 Punkte)

Hinweis: Für jede nicht korrekt angekreuzte Antwort werden 0,25 Punkte abgezogen!

Fe-C-Dia	Fe-C-Diagramm, Allotropie			
Richtig	Falsch	Aussage		
		γ -Eisen (austenite) ist hexagonal dichtest gepackt (hcp).		
		Zementit besitzt einen Kohlenstoffgehalt von $4,3~\%$.		
		Eisen-Kohlenstoff-Legierungen (metastabil) besitzen einen niedrigeren		
		Schmelzpunkt (melting point) als reines Eisen.		
		γ -Eisen (austenite) löst weniger Kohlenstoff als α -Eisen (ferrite).		
		Als Gusseisen (cast iron) werden Eisen-Kohlenstoff-Legierungen bezeichnet, in		
		denen sich der Kohlenstoff als Graphit ausscheidet ($>2~\%$ Kohlenstoff).		
		Beim Abschrecken (quenching) von Stahl entsteht ein verzerrtes krz (bcc)-Gitter,		
		sofern genügend Kohlenstoff gelöst ist.		
		Bei Abkühlung auf $723~^{\circ}\mathrm{C}$ zerfällt der γ -Mischkristall (austenite) mit 0,8 Massen-		
		% Kohlenstoff in α -Eisen (ferrite) und Zementit.		
		Gusseisen (cast iron) zeichnet sich durch hohe Umformbarkeit (formability) und		
		Zähigkeit (toughness) aus.		
		Nahe der eutektischen Zusammensetzung besitzen Fe-C-Legierungen schlech-		
		te Gießeigenschaften (casting properties).		

Phasenl	Phasenlehre, Zustandsdiagramme, Erstarrung (solidification)		
Richtig	Falsch	Aussage	
		Zustandsdiagramme enthalten Informationen über die bei verschiedenen Tem-	
		peraturen und chemischen Zusammensetzungen vorliegenden Phasen von Le-	
		gierungen.	
		Oberhalb der Liquiduslinie sind Stoffe flüssig.	
		Eisen und Blei (Pb) sind im flüssigen und festen Zustand teilweise löslich (partial	
		soluble).	
		Eine langsame ungerichtete Erstarrung (solidification) erzeugt ein globolitisches,	
		grobkristallines Gefüge (coarsely crystalline structure).	

Name: Seite 25 von 37

Mastereingangstest Werkstoffkunde

Phasenlehre, Zustandsdiagramme, Erstarrung (solidification)		
Richtig	Falsch	Aussage
		Phasen sind homogene feste oder flüssige Körper, die sich durch eine (mikro-
		skopisch) sichtbare Grenzfläche von andersartigen Körpern mit sprunghaft (ab-
		ruptly) sich ändernden Eigenschaften unterscheiden.

Stahlhei	Stahlherstellung		
Richtig	Falsch	Aussage	
		Die Kokille (ingot mould) beim Strangguss (continuous casting) ist konisch ge-	
		formt, um eine optimale Kühlung der Strangschale zu gewährleisten.	
		Eine moderne Kette der Stahlerzeugung bilden der Hochofenprozess (blast fur-	
		nace), ein Sauerstoffaufblasverfahren (basic oxygen steel process), die Sekun-	
		därmetallurgie und der Beschichtungsprozess.	

Bindung	Bindungsarten(kind of linkage)		
Richtig	Falsch	Aussage	
		Metalle besitzen eine gute elektrische und thermische Leitfähigkeit.	
		Atome gehen Bindungen ein, um ihr Energieniveau zu erhöhen.	
		Bei der Ionenbindung werden Elektronen vom Kation auf das Anion übertragen.	
		Gefüge im Eisen-Kohlenstoff-System sind immer kovalent gebunden.	
		Miller'sche Indizes beschreiben die Ladungsverteilung (charge distribution) in	
		einem Molekül.	

Korrosion			
Richtig	Falsch	Aussage	
		Passivierbare Werkstoffe bilden eine Deckschicht (surface layer), die vor Korro-	
		sion schützt.	
		Spannungsrisskorrosion (stress corrosion) tritt nur bei Bauteilen unter rein stati-	
		scher Zugspannung auf.	
		Das Prinzip der Opferanode (sacrificial anode) gehört zur passiven Art des Kor-	
		rosionsschutzes.	

Kristallgitter, Gitterfehler (lattice (defects))		
Richtig	Falsch	Aussage
		Die plastische Verformbarkeit (plasticity) von Metallen beruht auf der Bewegung
		(movement) von Versetzungen (dislocation).

Name: Seite 26 von 37

Kristallg	Kristallgitter, Gitterfehler (lattice (defects))		
Richtig	Falsch	Aussage	
		Auf der Atom- und Bindungsstrukturebene werden die Werkstoffeigenschaften,	
		wie Aussehen, Farbe, sowie elastisches und plastisches Verhalten bestimmt.	
		Anisotropie ist die Richtungsabhängigkeit (dependency of direction) von Werk-	
		stoffeigenschaften (material properties).	
		Substitutionsatome befinden sich auf den Gitterplätzen und dürfen eine maxima-	
		le Atomradiendifferenz von $15~\%$ aufweisen.	
		Ferrit hat kubisch flächenzentrierte Elementarzellen (fcc) mit 12 Gleitsystemen.	
		Zwillinge (twins) sind dreidimensionale Gitterfehler (lattice defect).	
		Gleitebenen (glide plane) sind dichtest gepackte Ebenen (close-packed planes).	
		Die Ebene $(0,0,1)$ bezeichnet eine der Außenflächen einer kubisch primitiven	
		Gitterzelle (primitive unit cell).	

Spannu	Spannungs-Dehnungs-Diagramm, Mechanische Prüfung, Zugversuch		
Richtig	Falsch	Aussage	
		Der E-Modul (Youngs modulus) ist eine Werkstoffkonstante.	
		Beim Zugversuch (tensile test) treten bei geringen Spannungen elastische, re-	
		versible Formänderungen auf.	
		Die Grenze zwischen elastischem und plastischem Bereich beim Zugversuch	
		(tensile test) von einem kfz (fcc)-Stahl bzw. einem Nicht-Eisen-Metall wird übli-	
		cherweise bei der plastischen Dehnung von $0.2~\%$ definiert.	
		Der Elastizitätsmodul (Youngs modulus) lässt sich durch eine Wärmebehandlung	
		(heat treatment) verändern.	
		Der Kerbschlagbiegeversuch (notched-bar impact-bending test) charakterisiert	
		das Werkstoffverhalten bei einer einachsigen Beanspruchung (uniaxial load) und	
		hoher Geschwindigkeit (velocity).	

Nichteisenwerkstoffe (non-ferrous metals and other materials)			
Richtig	Falsch	Aussage	
		Ein Duroplast besteht aus einem Molekül, das an sehr vielen Stellen vernetzt ist.	
		Messing ist eine Legierung aus Kupfer und Zink.	
		Unter dem Begriff MMC ist ein Verbundwerkstoff mit einer Matrix aus Cermets	
		zu verstehen.	

Name: Seite 27 von 37

Thermodynamik

Aufgabe 1 (4 Punkte)

Skizzieren Sie das Schema einer einfachen Kaltdampfkompressionskälteanlage, benennen Sie die Apparate und zeichnen Sie die auftretenden Zustandsänderungen (change of state condition) in einem T,s-Diagramm ein. Machen Sie die Zustände sowohl im Diagramm als auch im Schema kenntlich!

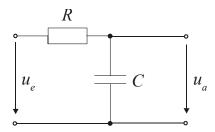
Name: Seite 28 von 37

Mastereingangstest Thermodynamik

Aufgabe 2 (1 Punkt)

Nennen Sie die notwendigen Bedingungen für das thermodynamische Gleichgewicht (thermodynamic equilibrium) bei Reinstoffen und Gemischen.

Name: Seite 29 von 37


Platz für Berechnungen:

Name: Seite 30 von 37

Mess- und Regelungstechnik

Aufgabe 1 (3 Punkte)

Gegeben sei ein passiver Tiefpassfilter 1.Ordnung (passive first-order low-pass filter):

Aufgabe 1a (1 Punkt)

Geben Sie die zugehörige Übertragungsfunktion (transfer function) $G(s)=\frac{U_a(s)}{U_e(s)}$ an.

Aufgabe 1b (1 Punkt)

Geben Sie eine Gleichung für $|G(j \cdot \omega)|$ und $\varphi(\omega)$ an.

Name: Seite 31 von 37

Aufgabe 1c (1 Punkt)

Skizzieren Sie einen passiven Hochpassfilter 1. Ordnung (passive first-order high-passfilter).

Name: Seite 32 von 37

Aufgabe 2 (2 Punkte)

Kreuzen Sie unter den folgenden Aussagen die Richtige an.

Aufgabe 2a (1 Punkt)

Die	Wurzelortskurven (root locus) kennzeichnen den Verlauf			
\bigcirc	der Pole des offenen Regelkreises.			
	(open loop system)			
\bigcirc	der Pole des geschlossenen Regelkreises.			
	(closed loop system)			
\bigcirc	der Pole und Nullstellen des offenen Regelkreises.			
	(poles and zero points in open loop)			
Aufgabe 2b (1 Punkt)				

Damit ein System schnell abklingt, sollte der dominante Pol

(To make the system oscillation fade quickly, the dominant pole)

\bigcirc	möglichst weit entfernt von der imaginären Achse in der linken s-Halbebene liegen.
	(should be located as far left as possible from the imaginary axis)
\bigcirc	möglichst nah an der imaginären Achse in der linken s-Halbebene liegen.
	(should be located as near as possible to the imaginary axis in the left s-half-plane)
\bigcirc	möglichst weit entfernt von der imaginären Achse in der rechten s-Halbebene liegen.
	(should be located as far as possible from the imaginary axis in the right s-half-plane

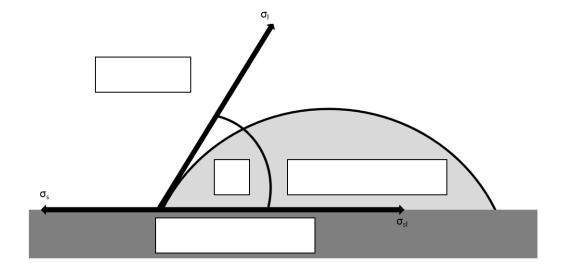
Seite 33 von 37 Name:

Medizintechnische Grundlagen

Aufgabe 1 (1 Punkt)

Was versteht man unter ex vivo Versuchssystemen?

Name: Seite 34 von 37


Aufgabe 2 (2 Punkte)

Definieren Sie die Begriffe hydrophil und hydrophob und erläutern Sie anhand einer Skizze.

Name: Seite 35 von 37

Aufgabe 3 (2 Punkte)

Ergänzen Sie die schematische Darstellung der Kontaktwinkelmessung.

Name: Seite 36 von 37

Platz für Berechnungen:

Name: Seite 37 von 37